Test Report issued under the responsibility of:

TEST REPORT IEC 62471 Photobiological safety of lamps and lamp systems

Report Reference No	EFSH23090258-IE-01-L01
Date of issue:	2024-01-17
Total number of pages:	20 pages
Name of Testing Laboratory	Eurofins Electrical Testing Service (Shanghai) Co., Ltd
preparing the Report:	Building 18, No. 2168 Chenhang Highway, Minhang District, Shanghai, China
Applicant's name:	TULED ELEKTRONİK SANAYİ TİCARET ANONİM ŞİRKETİ
Address:	CIRGALAN MAH. 4140. CAD. NO:2 KOCASİNAN / KAYSERİ- TURKIYE
Test specification:	
Standard:	IEC 62471:2006
Test procedure:	Test report
Non-standard test method:	N/A
Test Report Form No	IEC62471B
TRF Originator	VDE Testing and Certification Institute
Master TRF:	Dated 2018-08-16

Copyright © 2018 IEC System for Conformity Testing and Certification of Electrical Equipment (IECEE), Geneva, Switzerland. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the IECEE is acknowledged as copyright owner and source of the material. IECEE takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

This report is not valid as a CB Test Report unless signed by an approved CB Testing Laboratory and appended to a CB Test Certificate issued by an NCB in accordance with IECEE 02.

General disclaimer:

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Issuing CB Testing Laboratory. The authenticity of this Test Report and its contents can be verified by contacting the NCB, responsible for this Test Report.

Test item description	LED bulb
Trade Mark:	See 'Copy of marking plate'
Manufacturer:	TULED ELEKTRONİK SANAYİ TİCARET ANONİM ŞİRKETİ
	Cirgalan Mah. 4140. Cad. NO:2 Kocasinan / KAYSERİ
Model/Type reference:	BLRDA80S652142NN
Ratings	110-240V~, 50-60Hz, 12W

	IEC 62471		
Clause	Requirement + Test	Result – Remark	Verdict

4	EXPOSURE LIMITS		Р
4.1	General		Р
	The exposure limits in this standard is not less than 0,01 ms and not more than any 8-hour period and should be used as guides in the control of exposure		Р
	Detailed spectral data of a light source are generally required only if the luminance of the source exceeds $10^4 \text{ cd} \cdot \text{m}^{-2}$	see clause 4.3	Р
4.3	Hazard exposure limits		Р
4.3.1	Actinic UV hazard exposure limit for the skin and eye		Р
	The exposure limit for effective radiant exposure is $30 \text{ J} \cdot \text{m}^{-2}$ within any 8-hour period		Р
	To protect against injury of the eye or skin from ultraviolet radiation exposure produced by a broadband source, the effective integrated spectral irradiance, Es, of the light source shall not exceed the levels defined by:		Р
	$E_{\rm s} \cdot t = \sum_{200}^{400} \sum_{t} E_{\lambda}(\lambda, t) \cdot S_{\rm UV}(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 30 \qquad \qquad \text{J} \cdot \text{m}^{-2}$		Ρ
	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye or skin shall be computed by:		Ρ
	$t_{\max} = \frac{30}{E_s} \qquad s$		Р
4.3.2	Near-UV hazard exposure limit for eye		Р
	For the spectral region 315 nm to 400 nm (UV-A) the total radiant exposure to the eye shall not exceed 10000 J m ⁻² for exposure times less than 1000 s. For exposure times greater than 1000 s (approximately 16 minutes) the UV-A irradiance for the unprotected eye, E _{UVA} , shall not exceed 10 W m ⁻² .		Ρ
	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye for time less than 1000 s, shall be computed by:		Ρ
	$t_{\max} \le \frac{10\ 000}{E_{\text{UVA}}} \qquad \text{s}$		Р
4.3.3	Retinal blue light hazard exposure limit		Р
	To protect against retinal photochemical injury from chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, $B(\lambda)$, i.e., the blue-light weighted radiance , L _B , shall not exceed the levels defined by:		Ρ

	IEC 62471		
Clause	Requirement + Test	Result – Remark	Verdict

	$L_{\rm B} \cdot t = \sum_{300}^{700} \sum_{t} L_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^6 \qquad \rm J \cdot m^{-2} \cdot sr^{-1}$	for t ≤ 10 ⁴ s $t_{max} = \frac{10^6}{L_B}$	N/A
	$L_{\rm B} = \sum_{300}^{700} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 100 \qquad \qquad {\rm W} \cdot {\rm m}^{-2} \cdot {\rm sr}^{-1}$	for t > 10 ⁴ s	Р
4.3.4	Retinal blue light hazard exposure limit - small source	9	N/A
	Thus the spectral irradiance at the eye E_{λ} , weighted against the blue-light hazard function $B(\lambda)$ shall not exceed the levels defined by:	see table 4.2	N/A
	$E_{B} \cdot t = \sum_{300}^{700} \sum_{t} E_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 \qquad J \cdot m^{-2}$	for t ≤ 100 s	N/A
	$E_{B} = \sum_{300}^{700} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 1 \qquad W \cdot m^{-2}$	for t > 100 s	N/A
4.3.5	Retinal thermal hazard exposure limit		Р
	To protect against retinal thermal injury, the integrated spectral radiance of the light source, L_{λ} , weighted by the burn hazard weighting function $R(\lambda)$ (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by:		P
	$L_{\rm R} = \sum_{380}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{50000}{\alpha \cdot t^{0,25}} \qquad \qquad {\rm W} \cdot {\rm m}^{-2} \cdot {\rm sr}^{-1}$	(10 µs ≤ t ≤ 10 s)	Р
4.3.6	Retinal thermal hazard exposure limit – weak visual s		N/A
	For an infrared heat lamp or any near-infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, L_{IR} , as viewed by the eye for exposure times greater than 10 s shall be limited to:		N/A
	$L_{\rm IR} = \sum_{780}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} \qquad W \cdot {\rm m}^{-2} \cdot {\rm sr}^{-1}$	t > 10 s	N/A
4.3.7	Infrared radiation hazard exposure limits for the eye		Р
	The avoid thermal injury of the cornea and possible delayed effects upon the lens of the eye (cataractogenesis), ocular exposure to infrared radiation, E_{IR} , over the wavelength range 780 nm to 3000 nm, for times less than 1000 s, shall not exceed:		N/A
	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta\lambda \le 18000 \cdot t^{-0,75} \qquad W \cdot m^{-2}$	t ≤ 1000 s	N/A
	For times greater than 1000 s the limit becomes:		Р
	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 100 \qquad W \cdot m^{-2}$	t > 1000 s	Р

	IEC 62471		
Clause	Requirement + Test	Result – Remark	Verdict

4.3.8	Thermal hazard exposure limit for the skin		Р
	Visible and infrared radiant exposure (380 nm to 3000 nm) of the skin shall be limited to:		Р
	$E_{H} \cdot t = \sum_{380}^{3000} \sum_{t} E_{\lambda}(\lambda, t) \cdot \Delta t \cdot \Delta \lambda \le 20000 \cdot t^{0,25} \qquad J \cdot m^{-2}$		Ρ
5	MEASUREMENT OF LAMPS AND LAMP SYSTEM	S	Р
5.1	Measurement conditions		Р
	Measurement conditions shall be reported as part of the evaluation against the exposure limits and the assignment of risk classification.		Ρ
5.1.1	Lamp ageing (seasoning)	Aging time of the sample was 1 hours.	Р
	Seasoning of lamps shall be done as stated in the appropriate IEC lamp standard.		N/A
5.1.2	Test environment		Р
	For specific test conditions, see the appropriate IEC lamp standard or in absence of such standards, the appropriate national standards or manufacturer's recommendations.	Test condition: 240 V~	Ρ
5.1.3	Extraneous radiation		Р
	Careful checks should be made to ensure that extraneous sources of radiation and reflections do not add significantly to the measurement results.		Ρ
5.1.4	Lamp operation		N/A
	Operation of the test lamp shall be provided in accordance with:		N/A
	 the appropriate IEC lamp standard, or 		N/A
	 the manufacturer's recommendation 		N/A
5.1.5	Lamp system operation		Р
	The power source for operation of the test lamp shall be provided in accordance with:		Ρ
	 the appropriate IEC standard, or 		N/A
	 the manufacturer's recommendation 		Р
5.2	Measurement procedure		Р
5.2.1	Irradiance measurements		Р
	Minimum aperture diameter 7mm.		Р
	Maximum aperture diameter 50 mm.		Р
	The measurement shall be made in that position of the beam giving the maximum reading.		Р
	The measurement instrument is adequate calibrated.		Р
5.2.2	Radiance measurements		Р

	IEC 62471		
Clause	Requirement + Test	Result – Remark	Verdict

5.2.2.1	Standard method		Р
	The measurements made with an optical system.		Р
	The instrument shall be calibrated to read in absolute radiant power per unit receiving area and per unit solid angle to acceptance averaged over the field of view of the instrument.		Р
5.2.2.2	Alternative method		N/A
	Alternatively to an imaging radiance set-up, an irradiance measurement set-up with a circular field stop placed at the source can be used to perform radiance measurements.		N/A
5.2.3	Measurement of source size		Р
	The determination of α , the angle subtended by a source, requires the determination of the 50% emission points of the source.		Р
5.2.4	Pulse width measurement for pulsed sources		N/A
	The determination of Δt , the nominal pulse duration of a source, requires the determination of the time during which the emission is > 50% of its peak value.		N/A
5.3	Analysis methods		Р
5.3.1	Weighting curve interpolations		Р
	To standardize interpolated values, use linear interpolation on the log of given values to obtain intermediate points at the wavelength intervals desired.	see table 4.1	Р
5.3.2	Calculations		Р
	The calculation of source hazard values shall be performed by weighting the spectral scan by the appropriate function and calculating the total weighted energy.		Р
5.3.3	Measurement uncertainty		Р
	The quality of all measurement results must be quantified by an analysis of the uncertainty.	see Annex C in the norm	Р
6	LAMP CLASSIFICATION		Р
	For the purposes of this standard it was decided that the values shall be reported as follows:	see table 6,1	Р
	 for lamps intended for general lighting service, the hazard values shall be reported as either irradiance or radiance values at a distance which produces an illuminance of 500 lux, but not at a distance less than 200 mm 	500 mm	Ρ
	 for all other light sources, including pulsed lamp sources, the hazard values shall be reported at a distance of 200 mm 		N/A
6.1	Continuous wave lamps		Р

	IEC 62471		
Clause	Requirement + Test	Result – Remark	Verdict

6.1.1	Except Group	Р
	In the except group are lamps, which does not pose any photobiological hazard. The requirement is met by any lamp that does not pose:	Р
	 an actinic ultraviolet hazard (Es) within 8-hours exposure (30000 s), nor 	Р
	 a near-UV hazard (E_{UVA}) within 1000 s, (about 16 min), nor 	Р
	 a retinal blue-light hazard (L_B) within 10000 s (about 2,8 h), nor 	Р
	- a retinal thermal hazard (L _R) within 10 s, nor	Р
	 an infrared radiation hazard for the eye (E_{IR}) within 1000 s 	Р
6.1.2	Risk Group 1 (Low-Risk)	N/A
	In this group are lamps, which exceeds the limits for the except group but that does not pose:	N/A
	 an actinic ultraviolet hazard (Es) within 10000 s, nor 	N/A
	- a near ultraviolet hazard (E _{UVA}) within 300 s, nor	N/A
	- a retinal blue-light hazard (L _B) within 100 s, nor	N/A
	- a retinal thermal hazard (L _R) within 10 s, nor	N/A
	 an infrared radiation hazard for the eye (E_{IR}) within 100 s 	N/A
	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 100 s are in Risk Group 1.	N/A
6.1.3	Risk Group 2 (Moderate-Risk)	N/A
	This requirement is met by any lamp that exceeds the limits for Risk Group 1, but that does not pose:	N/A
	 an actinic ultraviolet hazard (Es) within 1000 s exposure, nor 	N/A
	 a near ultraviolet hazard (E_{UVA}) within 100 s, nor 	N/A
	 a retinal blue-light hazard (L_B) within 0,25 s (aversion response), nor 	N/A
	 a retinal thermal hazard (L_R) within 0,25 s (aversion response), nor 	N/A
	 an infrared radiation hazard for the eye (E_{IR}) within 10 s 	N/A
	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (LIR), within 10 s are in Risk Group 2.	N/A
6.1.4	Risk Group 3 (High-Risk)	N/A

	IEC 62471		
Clause	Requirement + Test	Result – Remark	Verdict

Wavelength ¹ λ, nm	UV hazard function S _{υν} (λ)	Wavelength λ, nm	UV hazard function S _ω (λ)
200	0,030	313*	0,006
205	0,051	315	0,003
210	0,075	316	0,0024
215	0,095	317	0,0020
220	0,120	318	0,0016
225	0,150	319	0,0012
230	0,190	320	0,0010
235	0,240	322	0,00067
240	0,300	323	0,00054
245	0,360	325	0,00050
250	0,430	328	0,00044
254*	0,500	330	0,00041
255	0,520	333*	0,00037
260	0,650	335	0,00034
265	0,810	340	0,00028
270	1,000	345	0,00024
275	0,960	350	0,00020
280*	0,880	355	0,00016
285	0,770	360	0,00013
290	0,640	365*	0,00011
295	0,540	370	0,000093
297*	0,460	375	0,000077
300	0,300	380	0,000064
303*	0,120	385	0,000053
305	0,060	390	0,000044
308	0,026	395	0,000036
310	0,015	400	0,000030

¹ Wavelengths chosen are representative: other values should be obtained by logarithmic interpolation at intermediate wavelengths.

* Emission lines of a mercury discharge spectrum.

	IEC 62471		
Clause	Requirement + Test	Result – Remark	Verdict

sources		
Wavelength nm	Blue-light hazard function Β (λ)	Burn hazard functio R (λ)
300	0,01	
305	0,01	
310	0,01	
315	0,01	
320	0,01	
325	0,01	
330	0,01	
335	0,01	
340	0,01	
345	0,01	
350	0,01	
355	0,01	
360	0,01	
365	0,01	
370	0,01	
375	0,01	
380	0,01	0,1
385	0,013	0,13
390	0,025	0,25
395	0,05	0,5
400	0,10	1,0
405	0,20	2,0
410	0,40	4,0
415	0,80	8,0
420	0,90	9,0
425	0,95	9,5
430	0,98	9,8
435	1,00	10,0
440	1,00	10,0
445	0,97	9,7
450	0,94	9,4
455	0,90	9,0
460	0,80	8,0
465	0,70	7,0
470	0,62	6,2
475	0,55	5,5
480	0,45	4,5
485	0,40	4,0
490	0,22	2,2
495	0,16	1,6
500-600	10 ^[(450-λ)/50]	1,0
600-700	0,001	1,0
700-1050		10 ^[(700-λ)/500]
1050-1150		0,2
<u>1150-1200</u> 1200-1400		0,2·10 ^{0,02(1150-λ)} 0,02

		IEC 62471		
Clause	Requirement + Test	Res	sult – Remark	Verdict

Table 5.4	Summary of the ELs for the	surface of the sl	kin or cornea (irradiance bas	sed values)	Р
Hazard Name	Relevant equation	Wavelength range nm	Exposure duration sec	Limiting aperture rad (deg)	EL in ter constant ir W•m	radiance
Actinic UV skin & eye	$E_{S} = \sum E_{\lambda} \bullet S(\lambda) \bullet \Delta \lambda$	200 - 400	< 30000	1,4 (80)	30/	t
Eye UV-A	$E_{UVA} = \sum E_{\lambda} \bullet \Delta \lambda$	315 – 400	≤1000 >1000	1,4 (80)	1000 10	
Blue-light small source	$E_{B} = \sum E_{\lambda} \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	≤100 >100	< 0,011	100 1,0	
Eye IR	$E_{IR} = \sum E_{\lambda} \bullet \Delta \lambda$	780 –3000	≤1000 >1000	1,4 (80)	18000/ 100	
Skin thermal	$E_{H} = \sum E_{\lambda} \bullet \Delta \lambda$	380 - 3000	< 10	2π sr	20000/	t ^{0,75}

Table 5.5	5 Summary of the ELs for the retina (radiance based values)						Р
Hazard Na	me	Relevant equation	Wavelength range nm	Exposure duration sec	Field of view radians	EL in ter constant r W•m ⁻² •	adiance
Blue light		$L_B = \sum L_\lambda \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	0,25 – 10 10-100 100-10000 ≥ 10000	0,011•√(t/10) 0,011 0,0011•√t 0,1	10 ⁶ / 10 ⁶ / 10 ⁶ / 100	/t /t
Retinal thermal		$L_{R} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	380 – 1400	< 0,25 0,25 – 10	0,0017 0,011•√(t/10)	50000/(c 50000/(c	,
Retinal thermal (weak visual stimulus)		$L_{IR} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	780 – 1400	> 10	0,011	6000	//α

	EN	62471	
Clause	Requirement + Test	Result - Remark	Verdict

ATTACHMENT TO TEST REPORT IEC 62471 EUROPEAN GROUP DIFFERENCES AND NATIONAL DIFFERENCES

Photobiological safety of lamps and lamps systems

Differences according to..... EN 62471:2008

Annex Form No..... EU_GD_IEC62471B

Annex Form Originator OVE

Master Annex Form...... 2019-01-24

Copyright © 2019 IEC System for Conformity Testing and Certification of Electrical Equipment (IECEE), Geneva, Switzerland. All rights reserved.

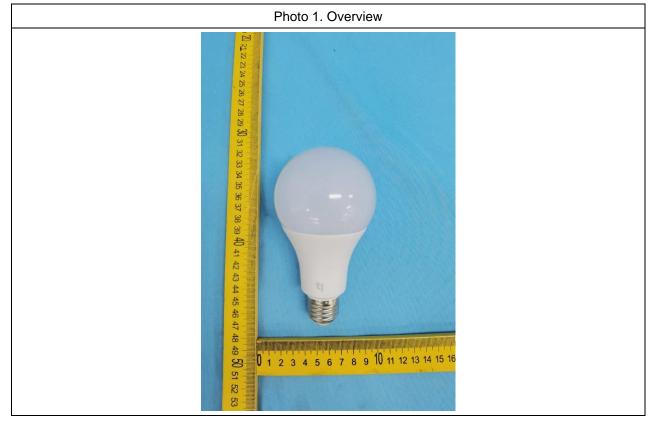
	CENELEC COMMON MODIFICATIONS (EN)			
4	EXPOSURE LIMITS	EXPOSURE LIMITS		
	Contents of the whole Clause 4 of IEC 62471:2006 moved into a new informative Annex ZB		_	
	Clause 4 replaced by the following:		Р	
	Limits of the Artificial Optical Radiation Directive (2006/25/EC) have been applied instead of those fixed in IEC 62471:2006	See appended Table 6.1	Р	
4.1	General	•	Р	
	First paragraph deleted		_	

	EN 6	2471	
Clause	Requirement + Test	Result – Remark	Verdict

Emission limi	ts for risk gro	ups of continu	uous wave lamps					Р
			Emission Measurement					
	Symbol	Units	Exempt		Lov	v risk	Moo	d risk
opoolidiii			Limit	Result	Limit	Result	Limit	Result
S _{UV} (λ)	Es	W•m⁻²	0,001	1,311E-05				
	Euva	W•m⁻²	0,33	1,475E-03				
Β(λ)	L _B	W•m ⁻² •sr ⁻¹	100	3,066E+01	10000		4000000	
Β(λ)	Ев	W•m⁻²	0,01*		1,0		400	
R(λ)	L _R	W•m ⁻² •sr ⁻¹	28000/α	4,608E+02	28000/α		71000/α	
		545000 0,0017≤ α ≤ 0,011						
	LIK	W III - 31	6000/α 0,011≤ α ≤ 0,1		7,436E-02, α=100,00mrad			
	EIR	W•m ⁻²	100	1,173E-03	570		3200	
	Eh	W•m ⁻²	3556,56	1,420E+00				
			. Averaging field of vi	ew at 10000	s is 0,1 rad	ian.		
			e 4.2					
			400					
	-			anco angles:	soo Tabla l	5 5		
	Action spectrum Suv(λ) $B(\lambda)$ $B(\lambda)$ $R(\lambda)$ R(λ) rce defined as evaluation of maction function applicable apelimitations for the second	Action spectrumSymbolSuv(λ)EsSuv(λ)EsB(λ)LBB(λ)LBR(λ)LRR(λ)LREnn <td>Action spectrumSymbolUnitsSuv(λ)EsW•m⁻²Suv(λ)EsW•m⁻²EuvaW•m⁻²B(λ)LBW•m⁻²•sr⁻¹B(λ)EBW•m⁻²•sr⁻¹B(λ)LRW•m⁻²•sr⁻¹R(λ)LRW•m⁻²•sr⁻¹R(λ)LIRW•m⁻²•sr⁻¹ElinW•m⁻²•sr⁻¹ConstrainedElinW•m⁻²EinW•m⁻²EnSurceSourceaction functions: see Table 4.1 and Tableapplicable aperture diameters: see 4.2.1limitations for the angular subtenses: see</td> <td>spectrumSymbolUnitsExemptSuv(λ)EsW•m²0,001EuvaW•m²0,001EuvaW•m²0,33B(λ)LBW•m²•sr²100B(λ)EBW•m²•sr²0,01*R(λ)LRW•m²•sr²28000/αR(λ)LRW•m²•sr²28000/αR(λ)LRW•m²•sr²28000/αR(λ)LRW•m²•sr²26000R(λ)LRW•m²•sr²28000/α0,0017≤ α ≤ 0,0116000/α0,011≤ α ≤ 0,11EIRW•m²100EhW•m²3556,56rce defined as one with α < 0,011 radian. Averaging field of viewaluation of non-GLS source</td> Averaging field of viewaluation of non-GLS sourceaction functions: see Table 4.1 and Table 4.2applicable aperture diameters: see 4.2.1limitations for the angular subtenses: see 4.2.24.2	Action spectrumSymbolUnitsSuv(λ)EsW•m ⁻² Suv(λ)EsW•m ⁻² EuvaW•m ⁻² B(λ)LBW•m ⁻² •sr ⁻¹ B(λ)EBW•m ⁻² •sr ⁻¹ B(λ)LRW•m ⁻² •sr ⁻¹ R(λ)LRW•m ⁻² •sr ⁻¹ R(λ)LIRW•m ⁻² •sr ⁻¹ ElinW•m ⁻² •sr ⁻¹ ConstrainedElinW•m ⁻² EinW•m ⁻² EnSurceSourceaction functions: see Table 4.1 and Tableapplicable aperture diameters: see 4.2.1limitations for the angular subtenses: see	spectrumSymbolUnitsExemptSuv(λ)EsW•m²0,001EuvaW•m²0,001EuvaW•m²0,33B(λ)LBW•m²•sr²100B(λ)EBW•m²•sr²0,01*R(λ)LRW•m²•sr²28000/ α R(λ)LRW•m²•sr²28000/ α R(λ)LRW•m²•sr²28000/ α R(λ)LRW•m²•sr²26000R(λ)LRW•m²•sr²28000/ α 0,0017≤ α ≤ 0,0116000/ α 0,011≤ α ≤ 0,11EIRW•m²100EhW•m²3556,56rce defined as one with α < 0,011 radian. Averaging field of viewaluation of non-GLS source	Action spectrumSymbolUnitsEmisSuv(λ)EsW•m²0,0011,311E-05Suv(λ)EsW•m²0,0011,311E-05EuvAW•m²0,331,475E-03B(λ)LBW•m²•sr¹1003,066E+01B(λ)EBW•m²•sr¹20,01*R(λ)LRW•m²•sr¹28000/ α 4,608E+02 $R(\lambda)$ LRW•m²•sr¹28000/ α 4,608E+02 $R(\lambda)$ LRW•m²•sr¹28000/ α 0,0175 $\alpha \le 0,011$ EIRW•m²•sr¹1001,173E-03EhW•m²3556,561,420E+00valuation of non-GLS sourceaction functions: see Table 4.1 and Table 4.2applicable aperture diameters: see 4.2.1Imitations for the angular subtenses: see 4.2.24.2.23.2.2	$\begin{array}{c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

IEC TR 62778					
Clause	Requirement + Test	Result - Remark	Verdict		

7	MEASUREMENT INFORMATION FLOW				
7.1	Basic flow				
	'Law of conservation of luminance' applied		Р		
	Use of only true luminance/radiance values		Р		
	In case of luminaire: The light source is operated in the luminaire under similar conditions as when tested as a component		N/A		
	In case Ethr value for RG2 was established the peak value was derived from angular light distribution		N/A		
7.2	Conditions for the radiance measurement				
	Standard condition applied (200mm distance, 0,011rad field of view)		Р		
	Non-standard condition applied		N/A		
7.3	Special cases (I): Replacement by a lamp or LED module of another type				
	Light source is a white light source		N/A		
	Evaluation done based on highest luminance		N/A		
	Evaluation done based on CCT value		N/A		
7.4	Special cases (II): Arrays and clusters of primary light sources				
	LED package is evaluated as	RG0 unlimited	N/A		
	Ethr of LED package applies to array		N/A		
8	RISK GROUP CLASSIFICATION				
	Risk group achieved:		Р		
	Risk Group 0 unlimited		Р		
	Risk Group 1 unlimited		N/A		
	- E _{thr} (lx) : Distance to reach RG1 (m) :	See below table	N/A		



IEC TR 62778							
Clause	Requirement + Test	Result - Remark	Verdict				

	TABLE: Spectroradiometric measurement								Р
	Measurement performed on:								
] LED module			
					\boxtimes] Lamp			
						Luminaire			
] LED			
	Model number	Test voltage (V) : Test current (mA) : Test frequency (Hz) : Ambient, t (°C) :				_RDA80S652142NN			
	Test voltage (V)					łO			
	Test current (mA))			
	Test frequency (Hz					50 25 ⊠ 20 cm			
	Ambient, t (°C)								
	Measurement dista								
]			
	Source size	Source size:			\boxtimes] Non-small			
					□ Small : mm				
	Field of view					🗌 100 mrad			
					\boxtimes] 11 mrad			
] 1,7 mrad (for smal	sou	irces)	
Item		Symbol	Units		Result		Remark		mark
	Correlated colour temperatur	e CCT ł		К		/			
	x/y colour coordinates					/			
Blue light hazard radiance		LB	W/(m ² •sr ¹)		4,262E+01		RG	RG 0	
Βlι	e light hazard irradiance	Ев	W/m ²		/		Î		
Luminance		L	cd/m ²		5,855E+04				
Illuminance		E	lx		/				
Ri	sk group achieved:								
RG 0Risk Group 0 unlimited									
	Risk Group 1 u	Risk Group 1 unlimited							
	- E _{thr}								
		Distance to reach RG1							

Sample photo

